The Influence of Different Stresses on Glomalin Levels in an Arbuscular Mycorrhizal Fungus—Salinity Increases Glomalin Content
نویسندگان
چکیده
Glomalin is a glycoprotein produced by arbuscular mycorrhizal (AM) fungi, and the soil fraction containing glomalin is correlated with soil aggregation. Thus, factors potentially influencing glomalin production could be of relevance for this ecosystem process and for understanding AM fungal physiology. Previous work indicated that glomalin production in AM fungi may be a stress response, or related to suboptimal mycelium growth. We show here that environmental stress can enhance glomalin production in the mycelium of the AM fungus Glomus intraradices. We applied NaCl and glycerol in different intensities to the medium in which the fungus was grown in vitro, causing salinity stress and osmotic stress, respectively. As a third stress type, we simulated grazing on the extraradical hyphae of the fungus by mechanically injuring the mycelium by clipping. NaCl caused a strong increase, while the clipping treatment led to a marginally significant increase in glomalin production. Even though salinity stress includes osmotic stress, we found substantially different responses in glomalin production due to the NaCl and the glycerol treatment, as glycerol addition did not cause any response. Thus, our results indicate that glomalin is involved in inducible stress responses in AM fungi for salinity, and possibly grazing stress.
منابع مشابه
Glomalin Production and Infectivity of Arbuscular-Mycorrhizal Fungi in Response to Grassland Plant Diversity
Arbuscular-mycorrhizal fungi (AMF) are integral components of most terrestrial ecosystems, with complex interactions between plants and AMF. Our study assessed the impact of plant diversity of native grassland species on AMF infectivity and production of glomalin, an AMF hyphal glycoprotein that may play an important role in soil aggregation. The study was conducted over a 3-year period in fiel...
متن کاملThe role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements.
Naturally occurring soil organic compounds stabilize potentially toxic elements (PTEs) such as Cu, Cd, Pb, and Mn. The hypothesis of this work was that an insoluble glycoprotein, glomalin, produced in copious amounts on hyphae of arbuscular mycorrhizal fungi (AMF) sequesters PTEs. Glomalin can be extracted from laboratory cultures of AMF and from soils. Three different experiments were conducte...
متن کاملCharacterization of glomalin as a hyphal wall component of arbuscular mycorrhizal fungi
Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain w...
متن کاملMycorrhizal responses to nitrogen fertilization in boreal ecosystems: potential consequences for soil carbon storage
Mycorrhizal fungi can contribute to soil carbon sequestration by immobilizing carbon in living fungal tissues and by producing recalcitrant compounds that remain in the soil following fungal senescence. We hypothesized that nitrogen (N) fertilization would decrease these carbon stocks, because plants should reduce investment of carbon in mycorrhizal fungi when N availability is high. We measure...
متن کاملتأثیر قارچ میکوریز آربسکولار بر غلظت گلومالین و کربوهیدراتهای خاک در سطوح مختلف شوری
Arbuscular mycorrhizal fungi (AMF) are widespread endosymbionts in terrestrial ecosystems and their exudates have important effects on soil properties. A greenhouse experiment was conducted with six AMF treatments including four exotic species inoculums (Funneliformis mosseae ,Claroideoglomus claroideum and Rhizophagus irregularis and a mixed isolate of three species), one mixed native AMF spe...
متن کامل